

Sydney Girls High School

2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

Extension 1

This is a trial paper ONLY. It does not necessarily reflect the format or the contents of the 2009 HSC Examination Paper in this subject.

Candidate Number

General Instructions

- Reading Time 5 minutes
- Working time 2 hours
- · Attempt ALL questions
- ALL questions are of equal value
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- · Standard integrals are supplied
- · Board-approved calculators may be used.
- Diagrams are not to scale
- Each question attempted should be started on a new sheet. Write on one side of the paper only.

Question 1 (12 marks)	Marks
(a) The remainder when the polynomial x^4 is divided by $x + a$ is 16. Find the value of a	2
(b) Differentiate $\sin^{-1}\left(\frac{x}{2}\right)$ with respect to x	1
(c) Evaluate $\int_{0}^{3} \frac{1}{x^2 + 9} dx$	3
(d) The interval AB, where A is (2,1) and B is (3,2) is divided internally in the ratio 4:3 by the point P(x,y). Find the values of x and y.	2
(e) Evaluate $\int_{0}^{1} xe^{x^{2}} dx$ Leave your answer in exact form.	2
(f) Let $f(x) = \sqrt{x^2 - 5x + 6}$ What is the domain of $f(x)$?	2

3

(a) Use the substitution $u = 1 - \sin x$ to evaluate $\int_{\frac{\pi}{2}}^{\frac{\pi}{6}} \cos x \sqrt{1 - \sin x} \ dx$

- (b) A particle moves on the x-axis with velocity v. Velocity is given by v = x-3Using the fact that $a = \frac{d}{dx}(\frac{1}{2}v^2)$, find the acceleration of the particle at x=4
- (c) The polynomial $P(x) = x^2 + ax + b$ has a zero at x = 2. When P(x) is divided by x l, the remainder is 2. Find the value of a and b
- (d) The function $f(x) = \sin x + \log x$ has a zero near x = 0.5Use one application of Newton's method to obtain another approximation to this zero. Give your answer correct to three decimal places.

Question 3	(12 marks)

(a)
 (i) Sketch the graph of y = x(x-2)(x-3) showing the x and y intercepts. Do not use calculus.

Marks

- (ii) Hence, or otherwise, solve $x^3 + 6x \ge 5x^2$
- (b) Use mathematical induction to prove that, for integers $n \ge 1$ $1 \times 2 + 2 \times 3 + 3 \times 4 + ... + n(n+1) = \frac{n(n+1)(n+2)}{3}$
- (c) The radius of a spherical balloon is expanding at a constant rate of $6cms^{-l}$ $(V = \frac{4}{3}\pi r^3, S = 4\pi r^2)$
 - (i) At what rate is the volume of the balloon expanding when its radius is 4cm? 2
 - (ii) At what rate is the surface area of the balloon expanding if the rate of change of volume is $15cm^3 s^{-l}$

Marks

2

Question 4 (12 marks)

- (a) A freshly baked chocolate cake is cooling in a room of constant temperature of 20° C. At time t minutes its temperature T decreases according to the equation $\frac{dT}{dt} = -k(T-20)$ where k is a positive constant. The initial temperature of the cake is 150° C and it cools to 100° C after 15 minutes.
 - (i) Verify that $T = 20 + Ae^{-kt}$ is a solution of this equation, where A is a constant
 - (ii) Find the values of A and k, giving k correct to three decimal places.
 - (iii) How long will it take for the temperature of the cake to cool to 25°C? 2
 Give your answer to the nearest minute.
- (b) The points $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ lie on the parabola $x^2 = 4ay$
 - (i) Show that the gradient of PQ is $\frac{p+q}{2}$
 - (ii) Show that if PQ passes through the focus then pq = -1
 - (iii) Find the equation of the locus of the midpoint of PQ if PQ is a focal chord.
- (c) Solve $\frac{5}{x-1} > 2$

Question 5 (12 marks)

(a) Let $f(x) = x^2 - 2x$ for $x \ge 1$. This function has an inverse, $f^{-1}(x)$

i) Sketch the graphs of y = f(x), $y = f^{-1}(x)$ and y=x on the same set of axes. (Use the same scale on both axes)

Marks

3

2

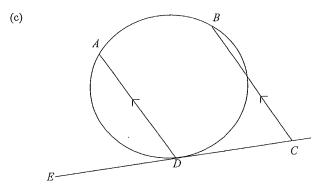
(ii) Find an expression for $f^{-1}(x)$

(iii) Evaluate $f^{-l}(2)$

(b) A particle is moving in simple harmonic motion in a straight line. 3

Its amplitude is 3m and its period is $\frac{\pi}{2}$ seconds.

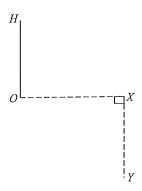
Find the maximum speed and maximum acceleration of the motion.



In the diagram above, $AD \parallel BC$ and the line EC is a tangent to the circle at D. Copy or trace the diagram Prove that $BD^2 = AD.BC$

3

(a) From a point X due east of a tower, the angle of elevation of the top of the tower H is 31°. From another point Y due south of X, the angle of elevation of H is 25°. The distance XY is 150m.



- (i) Copy or trace the diagram, adding the given information to your diagram
- (ii) Hence find the height of the tower
- (b) Find all values of θ in the range $0 \le \theta \le 2\pi$ for which $\sqrt{3}\cos\theta \sin\theta = 1$

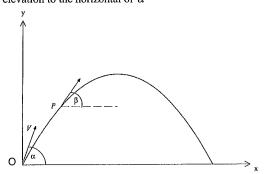
- (c) Find the equation of the normal to the curve $y = \frac{8}{x^2 + 4}$ at the point (2, 1)
 - (ii) Show that the normal in (i) does not touch the curve again.

Question 7 (12 marks)

- (a)
$$y = f(x)$$
 is an odd function
 $f(x) \ge 0$ if $x \ge 0$.
$$\int_{a}^{a} f(x)dx = a^{2} \times 2^{a} \text{ if } a > 0$$

(b) A particle is projected from a point O on horizontal ground, with speed Vms^{-1} at an angle of elevation to the horizontal of α

Find the area bounded by y = f(x + 3), x = -4, x = 4 and the x axis



Marks

3

Its equations of motion are $\ddot{x} = 0$, $\ddot{y} = -g$

(i) Show that
$$x = Vt \cos \alpha$$
 and $y = Vt \sin \alpha - \frac{1}{2}gt^2$

(ii) Show that the time of flight of the particle is
$$\frac{2V \sin \alpha}{g}$$

(iii) The particle reaches a point
$$P$$
, as shown, where the direction of the flight makes an angle β with the horizontal.

Show that the time taken to travel from
$$O$$
 to P is $\frac{V\sin(\alpha-\beta)}{g\cos\beta}$ seconds

(iv) Consider the case where
$$\beta = \frac{\alpha}{2}$$
 If the time taken to travel from O to P is then one-third of the total time of flight, find the value of α

- End of Exam -

Ext 1.

Question 1.

a)
$$f(\pi) = \pi c^4$$
divided by $\infty + a$

$$R = 16$$

e)
$$\int_{0}^{1} x e^{x} dx = \frac{1}{2} e^{x^{2}} \int_{0}^{1} e^{x} dx = \frac{1}{2} e^{x} = \frac{1}{2} e^{x} = \frac{1}{2} e^{x} = \frac{1}{2} e^{x} = \frac{1}{2} (e^{-1})$$

$$f(-a) = (-a)^4$$

= a^4
 $a^4 = 16$
 $a^4 = \frac{1}{2}$

F) Domain!
$$x^2 - 5x + 6 > 0$$
 $(x-3)(x-2) > 0$ $x \le 2$ and

b)
$$\frac{d}{dx} \left(\sin^{-1} \frac{x}{2} \right) = \frac{1}{\sqrt{4-x^2}} \left(\frac{1}{2\sqrt{1-4x^2}} \right)$$

c)
$$\int_0^3 \frac{1}{x^2 + 9} dx = \left[\frac{1}{3} + an^{-1} \frac{3}{3} \right]_0^3$$

$$=\frac{1}{3} \tan^{-1} 1 - \frac{1}{3} \tan^{-1} 0$$

$$\frac{1}{3} \cdot \frac{\pi}{4} = 0$$

$$= \frac{\pi}{12}$$

d)
$$x = n \frac{x_1 + mx_2}{m+n}$$
 $y = n \frac{y_1 + m y_2}{m+n}$ $\frac{m}{m+n}$

$$3(2) + 4(3)$$

$$y = \left(3(1) + 4(2)\right)$$

$$x = \left(\frac{6 + 12}{7}\right) \qquad y = \left(\frac{3 + 8}{7}\right)$$

$$\mathcal{C} = \frac{18}{7} \qquad \mathcal{G} = \frac{11}{7}$$

$$\mathcal{C} = \frac{18}{7} \qquad \mathcal{C} = \frac{11}{7}$$

(a)
$$u = 1 - \sin x$$
 when $n = \frac{\pi}{6}$

$$\frac{du}{dx} = -\cos x$$

$$- du = \cos x \cdot dx$$

$$u = 1 - \sin \frac{\pi}{6}$$

$$= 1 - \frac{1}{2} = \frac{1}{2}$$

$$= 1 - 1$$

$$= 0$$

$$\int_{T}^{T} \cos x \cdot \sqrt{1 - \sin x} \cdot dx$$

$$=\int_{0}^{\frac{1}{2}}-\sqrt{u}\cdot du$$

$$=-\left[\frac{2u^{\frac{3}{2}}}{3}\right]_{0}^{\frac{1}{2}}$$

$$a = -\left(\frac{2}{3}\left(\frac{1}{2}\right)^{\frac{3}{2}} - 0\right)$$

$$\left(\sqrt{\frac{1}{2}}\right)^3 = \left(\frac{1}{\sqrt{2}}\right)^3 = \frac{1}{2\sqrt{2}}$$

$$= -\frac{2}{3}\left(\frac{1}{2\sqrt{2}}\right)$$

$$=-\frac{1}{3\sqrt{2}}$$

(d)
$$P(x) = \sin x + \log x$$

 $P(0.5) = \sin 0.5 + \log 0.5$

$$p'(x) = \cos x + \frac{1}{3c}$$
 $p'(0.5) = \cos 0.5 + \frac{1}{0.5}$
 $= \cos 0.5 + 2$
 $x = a - P(a)$

$$= 0.5 - \frac{\sin 0.5 + \log 0.5}{\cos 0.5 + 2}$$

(b)
$$V = x-3$$

 $V^2 = (x-3)^2$
 $\frac{1}{2}V^2 = \frac{1}{2}(x^2-6x+9)$
 $= \frac{1}{2}x^2-3x+\frac{9}{2}$
 $a = \frac{1}{2}(\frac{1}{2}V^2)$

$$= 2c - 3$$
when $x = 4$

$$a = 4 - 3$$

$$= 1$$

(c)
$$P(n) = x^2 + ax + b$$

Factor (x-2)
 $P(2) = 4 + 2a + b$
 $0 = 4 + 2a + b$
 $b = -2a - 4$ (1)

$$P(1) = 1 + a + b$$

 $2 = 1 + a + b$
 $b = -a + 1 \dots (2)$

(1) = (2):

$$-2a-4=-a+1$$

 $-5=a$

Subain (2):

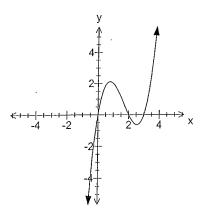
$$b = -(-5) + 1$$

 -6

3

Extension 1 - Trial 2009

Question 3 Solutions



ii.

From part i. $0 \le x \le 2$, or $x \ge 3$

Step 1 - Prove true for n=1

$$LHS = 1 \times 2$$

$$= 2$$

$$RHS = \frac{1(1+1)(1+2)}{3}$$

$$= \frac{6}{3}$$

$$= 2$$

$$= LHS$$

 \therefore true for n=1Step 2 - Assume true for n=k

$$1 \times 2 + 2 \times 3 + ... + k(k+1) = \frac{k(k+1)(k+2)}{3}$$

Step 3 - Prove true for n=k+1

Required to prove that:

$$1 \times 2 + 2 \times 3 + \dots + k(k+1) + (k+1)(k+2) = \frac{(k+1)(k+2)(k+3)}{3}$$

LHS = 1×2+2×3+...+k(k+1)+(k+1)(k+2)
=
$$\frac{k(k+1)(k+2)}{3}$$
+(k+1)(k+2)
= $\frac{k(k+1)(k+2)}{3}$ + $\frac{3(k+1)(k+2)}{3}$
= $\frac{(k+3)(k+1)(k+2)}{3}$
= RHS
∴ true for $n = k+1$

Therefore the statement is true for all positive integral values of n by induction.

$$\frac{dr}{dt} = 6$$

$$\frac{dV}{dr} = 4\pi r^{2}$$

$$\frac{dS}{dr} = 8\pi r$$

$$\frac{dV}{dt} = \frac{dr}{dt} \times \frac{dV}{dr}$$
$$= 6 \times 4\pi r^{2}$$
$$= 24\pi r^{2}$$

when r = 4

$$\frac{dV}{dt} = 24 \times \pi \times 4^2$$
$$= 384\pi cm^3 s^{-1}$$

ii.

$$\frac{dV}{dt} = 15$$

$$15 = 24\pi r^{2}$$

$$r^{2} = \frac{15}{24\pi}$$

$$r = \sqrt{\frac{15}{24\pi}}$$

$$\frac{dS}{dt} = \frac{dS}{dr} \times \frac{dr}{dt}$$

$$= 8\pi r \times 6$$

$$= 48\pi r$$

$$= 48\pi \times \sqrt{\frac{15}{24\pi}}$$

$$= 67.26cm^{2}s^{-1}$$

Question 4

(a). (i).
$$T = 20 + Ae^{-kt}$$

$$\frac{dT}{dt} = -kAe^{-kt}$$

$$= -k(20 + Ae^{-kt} - 20)$$

$$= -k(T - 20)$$

$$= -k(T - 20)$$
(ii).
$$T = 20 + Ae^{-kt}$$

$$150 = 20 + A$$

$$\therefore A = 130$$

$$T = 20 + 130e^{-kt}$$

$$100 = 20 + 130e^{-15k}$$

$$e^{-15k} = \frac{8}{13}$$

$$k = -\frac{1}{15}\ln\left(\frac{8}{13}\right)$$

$$\therefore k \approx 0.032$$
(iii).

7' = 25 when
$$t = ?$$

7' = 20 + 130 $e^{-0.032t}$
25 = 20 + 130 $e^{-0.032t}$

$$e^{-0.032t} = \frac{5}{130}$$

$$t = \ln\left(\frac{5}{130}\right) \div (-0.032)$$

$$\therefore t \approx 101.8 \text{ (i.e. 102 minutes)}$$

(b). (i).
$$m_{pq} = \frac{ap^2 - aq^2}{2ap - 2aq}$$

$$= \frac{a(p+q)(p-q)}{2a(p-q)}$$

$$= \frac{p+q}{2}$$

(ii).

pq :: --1

Equation of line PQ:

$$y - ap^2 = \frac{p+q}{2} (x - 2ap)$$

If PQ passes through the focus (0, a) then:

$$a - ap^2 = \frac{p+q}{2}(-2ap)$$

$$2a - 2ap^2 = -2apq$$

$$2a = -2apq$$

Midpoint of PQ is:

$$M = \left(\frac{2ap + 2aq}{2}, \frac{ap^2 + aq^2}{2}\right)$$

$$= \left(a(p+q), \frac{a}{2}(p^2 + q^2)\right)$$

$$\therefore x = a(p+q) \quad i.e. \quad p+q = \frac{x}{a}$$

$$y = \frac{a}{2}(p^2 + q^2)$$

$$= \frac{a}{2}((p+q)^2 - 2pq)$$

$$\therefore y = \frac{a}{2}\left(\frac{x^2}{a^2} + 2\right) \quad \text{of } y = \frac{x^2}{2a} + a$$

since pq = -1 (a focal chord)

(c).

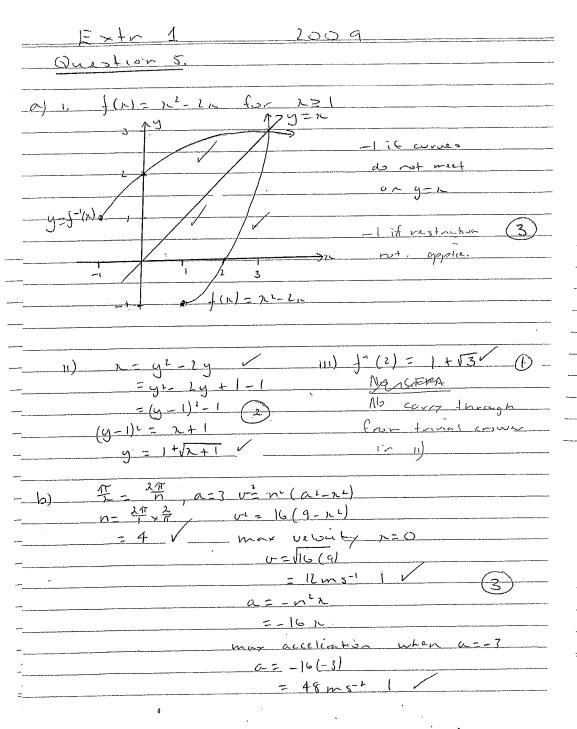
$$\frac{5}{x-1} \times (x-1)^2 > 2(x-1)^2$$

$$5(x-1) - 2(x-1)^2 > 0$$

$$(x-1)(5-2(x-1)) > 0$$

$$(x-1)(7-2x) > 0$$

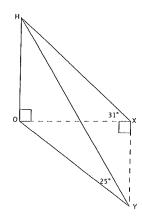
1 < x < 3.5





Question 6:

a)



In
$$\triangle OHX$$
: In $\triangle OHY$:

 $\tan 31^{\circ} = \frac{h}{OX}$ $\tan 25^{\circ} = \frac{h}{OY}$
 $OX = \frac{h}{\tan 31^{\circ}}$ $OY = \frac{h}{\tan 25^{\circ}}$

In
$$\triangle OXY$$
:
$$OY^{2} = OX^{2} + XY^{2}$$

$$\frac{h^{2}}{\tan^{2} 25^{0}} = \frac{h^{2}}{\tan^{2} 31^{0}} + 150^{2}$$

$$\frac{h^{2}}{\tan^{2} 25^{0}} - \frac{h^{2}}{\tan^{2} 31^{0}} = 150^{2}$$

$$\frac{h^{2} \tan^{2} 31 - h^{2} \tan^{2} 25}{\tan^{2} 25 \tan^{2} 31} = 150^{2}$$

$$tan^{2} 25 \tan^{2} 31 - tan^{2} 25 \right) = 150^{2} \tan^{2} 25 \tan^{2} 31$$

$$h^{2} \left(\tan^{2} 31 - \tan^{2} 25 \right) = \frac{150^{2} \tan^{2} 25 \tan^{2} 31}{\tan^{2} 31 - \tan^{2} 25}$$

$$h = 110.91096...$$

$$h \cong 110.9 \text{ m (to 1 dec. pl)}$$

b)
$$\sqrt{3}\cos\theta - \sin\theta = R\cos(\theta + \alpha)$$

= $R\cos\theta\cos\alpha - R\sin\theta\sin\alpha$

 $R\cos\alpha = \sqrt{3}$ $R\sin\alpha = 1$

$$R = \sqrt{\left(\sqrt{3}\right)^2 + 1^2}$$

$$= 2$$

$$\tan \alpha = \frac{1}{\sqrt{3}}$$

$$\alpha = \frac{\pi}{6}$$

$$2\cos\left(\theta + \frac{\pi}{6}\right) = 1$$

$$\cos\left(\theta + \frac{\pi}{6}\right) = \frac{1}{2}$$

$$\theta + \frac{\pi}{6} = \frac{\pi}{3}, \frac{5\pi}{3}$$

$$\theta = \frac{\pi}{6}, \frac{3\pi}{2}$$

(i)
$$y = \frac{8}{x^2 + 4}$$
 For normal: $m_N = -\frac{1}{m_T}$
 $= 8(x^2 + 4)^{-1}$ $= 2$
 $y' = \frac{-16x}{(x^2 + 4)^2}$ At $x = 2$: $y = \frac{8}{2^2 + 4}$
 $= 1$ Equation of normal at $(2,1)$: $= -\frac{32}{64}$ $y - y_1 = m(x - x_1)$
 $= -\frac{1}{2}$ $y - 1 = 2(x - 2)$
 $y = 2x - 3$

(ii) Points of intersection:

c)

$$2x-3 = \frac{8}{x^2+4}$$

$$(2x-3)(x^2+4) = 8$$

$$2x^3+8x-3x^2-20 = 0$$
Let $P(x) = 2x^3+8x-3x^2-20$

$$P(1) = -13$$

$$P(-1) = -33$$

$$P(2) = 0$$

$$\therefore (x-2) \text{ is a factor of } P(x)$$

Using division of polynomials:

$$P(x) = (x-2)(2x^{2} + x + 10)$$

$$\Delta = 1^{2} - 4 \cdot 2 \cdot 10$$

$$= -79$$

As $\Delta < 0$, $2x^2 + x + 10 = 0$ has no real roots. (i.e. no more points of intersection).

So the normal y = 2x - 3 does not touch the curve again.

7 (a)
$$f(x+3)$$
 is fix translated
3 units to the left

$$\int_{-4}^{4} f(x+3) dx = \int_{-1}^{7} f(x) dx$$

$$= \int_{0}^{4} f(x) dx + \int_{0}^{7} f(x) dx$$

$$A = \int_{0}^{4} f(x) dx + \int_{0}^{7} f(x) dx$$

$$= \int_{0}^{4} f(x) dx + \int_{0}^{7} f(x) dx$$

(A)(i)
$$\ddot{x} = 0$$
 $\ddot{y} = -9$
 $\dot{x} = V_{Reod}$ $\dot{y} = V_{mid} - gt$
 $x = V_{fund}$ $\dot{y} = V_{fund} - \frac{1}{2}gt^2$

(iii) ten
$$\beta = \frac{dy}{dx}$$

$$= \frac{dy}{dt} \times \frac{dt}{dx}$$

$$= \frac{V_{ni} \lambda - gt}{V_{res} d}$$

(iv)
$$\frac{2V\sin d}{3g} = \frac{V\sin (d-\frac{d}{2})}{3\pi \cos \frac{d}{2}}$$

$$\frac{2 \sin d}{3g} = \frac{\sin \frac{d}{2}}{\pi \cos \frac{d}{2}}$$

$$\frac{4 \sin^2 d}{\pi \cos \frac{d}{2}} = \frac{3}{\pi \cos \frac{d}{2}}$$

$$\frac{4 \cos^2 d}{\pi \cos \frac{d}{2}} = \frac{3}{\pi \cos \frac{d}{2}}$$

$$\frac{d}{2} = 30$$